Purpose.
To evaluate the relationship between accommodation, visual acuity, and emmetropization in human infancy.
Methods.
Defocus at distance and near (57 cm) was assessed using Mohindra and dynamic retinoscopy, respectively, in 262 normal birthweight infants at 3, 9, and 18 months of age. Preferential looking provided acuity data at the same ages. The spherical equivalent refractive error was measured by cycloplegic retinoscopy (cyclopentolate 1%).
Results.
Univariate linear regression analyses showed no associations between the change in refractive error and defocus at distance or near. Change in refractive error was linearly related to the accommodative response at distance (R2 = 0.17, p < 0.0001) and near (R2 = 0.13, p < 0.0001). The ten subjects with the poorest emmetropization relative to the change predicted by the linear effects of their refractive error had higher average levels of hyperopic defocus at distance and near (p < 0.043). Logistic regression showed a decrease in the odds of reaching +2.00 diopter or less hyperopia by 18 months with increasing levels of hyperopia at 3 months, or if Mohindra retinoscopy was myopic combined with acuity better than the median level of 1.25 logMAR [area under the receiver operating characteristic curve = 0.78 (95% CI = 0.68 to 0.88)].
Conclusions.
The level of cycloplegic refractive error was the best single factor for predicting emmetropization by 18 months of age, with smaller contributions from visual acuity and Mohindra retinoscopy. The lack of correlation between defocus and change in refractive error does not support a simple model of emmetropization in response to the level of hyperopic defocus. Infants were capable of maintaining accurate average levels of accommodation across a range of moderate hyperopic refractive errors at 3 months of age. The association between the change in refractive error and accommodative response suggests that accommodation is a plausible visual signal for emmetropization.